Search results
Results from the WOW.Com Content Network
Huygens' theory served as a fundamental explanation of the wave nature of light interference and was further developed by Fresnel and Young but did not fully resolve all observations such as the low-intensity double-slit experiment first performed by G. I. Taylor in 1909.
Huygens principle of double refraction, named after Dutch physicist Christiaan Huygens, explains the phenomenon of double refraction observed in uniaxial anisotropic material such as calcite. When unpolarized light propagates in such materials (along a direction different from the optical axis ), it splits into two different rays, known as ...
Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction (French: Traité de la Lumière: Où sont expliquées les causes de ce qui luy arrive dans la reflexion & dans la refraction) is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690.
It is an extension of Huygens–Fresnel principle, which describes each point on a wavefront as a spherical wave source. The equivalence of the imaginary surface currents are enforced by the uniqueness theorem in electromagnetism, which dictates that a unique solution can be determined by fixing a boundary condition on a system.
In his 1678 Traité de la Lumière, Christiaan Huygens showed how Snell's law of sines could be explained by, or derived from, the wave nature of light, using what we have come to call the Huygens–Fresnel principle. With the development of modern optical and electromagnetic theory, the ancient Snell's law was brought into a new stage.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
In Young's own judgment, of his many achievements the most important was to establish the wave theory of light set out by Christiaan Huygens in his Treatise on Light (1690). [33] [34] To do so, he had to overcome the century-old view, expressed in the venerable Newton's Opticks, that light is a particle. Nevertheless, in the early 19th century ...
Wave optics was successfully unified with electromagnetic theory by James Clerk Maxwell in the 1860s. [28] The next development in optical theory came in 1899 when Max Planck correctly modelled blackbody radiation by assuming that the exchange of energy between light and matter only occurred in discrete amounts he called quanta. [29]