enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1] The sum of these spherical wavelets forms a new wavefront.

  3. Huygens principle of double refraction - Wikipedia

    en.wikipedia.org/wiki/Huygens_principle_of...

    Huygens principle of double refraction, named after Dutch physicist Christiaan Huygens, explains the phenomenon of double refraction observed in uniaxial anisotropic material such as calcite. When unpolarized light propagates in such materials (along a direction different from the optical axis ), it splits into two different rays, known as ...

  4. Augustin-Jean Fresnel - Wikipedia

    en.wikipedia.org/wiki/Augustin-Jean_Fresnel

    He restated Huygens's principle in combination with the superposition principle, saying that the vibration at each point on a wavefront is the sum of the vibrations that would be sent to it at that moment by all the elements of the wavefront in any of its previous positions, all elements acting separately (see Huygens–Fresnel principle). For ...

  5. Treatise on Light - Wikipedia

    en.wikipedia.org/wiki/Treatise_on_Light

    Following his remarks on the propagation medium and the speed of light, Huygens gives a geometric illustration of the wavefront, the foundation of what became known as HuygensPrinciple. His principle of propagation is a demonstration of how a wave of light (or rather a pulse) emanating from a point also results in smaller wavelets: [12]

  6. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Christiaan Huygens' construction. In his 1678 Traité de la Lumière, Christiaan Huygens showed how Snell's law of sines could be explained by, or derived from, the wave nature of light, using what we have come to call the Huygens–Fresnel principle.

  7. Double-slit experiment - Wikipedia

    en.wikipedia.org/wiki/Double-slit_experiment

    The Huygens–Fresnel principle is one such model; it states that each point on a wavefront generates a secondary wavelet, and that the disturbance at any subsequent point can be found by summing the contributions of the individual wavelets at that point.

  8. Surface equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Surface_equivalence_principle

    The principle yields an equivalent problem for a radiation problem by introducing an imaginary closed surface and fictitious surface current densities.It is an extension of Huygens–Fresnel principle, which describes each point on a wavefront as a spherical wave source.

  9. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    Since the Huygens–Fresnel principle states that every point of a wavefront is associated with the production of a new disturbance, it is possible for a wavefront to interfere with itself constructively or destructively at different locations producing bright and dark fringes in regular and predictable patterns. [55]