Search results
Results from the WOW.Com Content Network
Thomas Malthus was one of the first to note that populations grew with a geometric pattern while contemplating the fate of humankind. [3] One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838.
Thus r is the maximum theoretical rate of increase of a population per individual – that is, the maximum population growth rate. The concept is commonly used in insect population ecology or management to determine how environmental factors affect the rate at which pest populations increase. See also exponential population growth and logistic ...
Population size can be influenced by the per capita population growth rate (rate at which the population size changes per individual in the population.) Births, deaths, emigration, and immigration rates all play a significant role in growth rate. The maximum per capita growth rate for a population is known as the intrinsic rate of increase.
It is widely regarded in the field of population ecology as the first principle of population dynamics, [6] with Malthus as the founder. The exponential law is therefore also sometimes referred to as the Malthusian Law. [7] By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in ...
For the competition equations, the logistic equation is the basis. The logistic population model, when used by ecologists often takes the following form: = (). Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity.
At , a slightly higher harvest rate, however there is only one equilibrium point (at ), which is the population size that produces the maximum growth rate. With logistic growth, this point, called the maximum sustainable yield, is where the population size is half the carrying capacity (or =). The maximum sustainable yield is the largest yield ...
Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.