enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Download as PDF; Printable version; In other projects ... move to sidebar hide. In mathematics, positive semidefinite may refer to: Positive semidefinite function ...

  3. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  4. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:

  5. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    U and P commute, where we have the polar decomposition A = UP with a unitary matrix U and some positive semidefinite matrix P. A commutes with some normal matrix N with distinct [clarification needed] eigenvalues. σ i = | λ i | for all 1 ≤ i ≤ n where A has singular values σ 1 ≥ ⋯ ≥ σ n and has eigenvalues that are indexed with ...

  6. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.

  7. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.

  8. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  9. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.