enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  3. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.

  4. Sinc numerical methods - Wikipedia

    en.wikipedia.org/wiki/Sinc_numerical_methods

    Sinc approximation methods excel for problems whose solutions may have singularities, or infinite domains, or boundary layers. The truncated Sinc expansion of f is defined by the following series: C M , N ( f , h ) ( x ) = ∑ k = − M N f ( k h ) sinc ( x h − k ) {\displaystyle C_{M,N}(f,h)(x)=\displaystyle \sum _{k=-M}^{N}f(kh)\,{\textrm ...

  5. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    The sinc function as audio, at 2000 Hz (±1.5 seconds around zero) In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by ⁡ = ⁡.. Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x).

  6. Trigonometric functions of matrices - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions_of...

    If X is a diagonal matrix, sin X and cos X are also diagonal matrices with (sin X) nn = sin(X nn) and (cos X) nn = cos(X nn), that is, they can be calculated by simply taking the sines or cosines of the matrices's diagonal components. The analogs of the trigonometric addition formulas are true if and only if XY = YX: [2]

  7. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The formula for the exponential results from reducing the powers of G in the series expansion and identifying the respective series coefficients of G 2 and G with −cos(θ) and sin(θ) respectively. The second expression here for e Gθ is the same as the expression for R ( θ ) in the article containing the derivation of the generator , R ( θ ...

  9. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Under rather general conditions, a periodic function f (x) can be expressed as a sum of sine waves or cosine waves in a Fourier series. [29] Denoting the sine or cosine basis functions by φ k, the expansion of the periodic function f (t) takes the form: = = ().