Ad
related to: conditional knockout mice control devices
Search results
Results from the WOW.Com Content Network
Conditional gene knockout is a technique used to eliminate a specific gene in a certain tissue, such as the liver. [1] [2] This technique is useful to study the role of individual genes in living organisms. It differs from traditional gene knockout because it targets specific genes at specific times rather than being deleted from beginning of life.
The International Knockout Mouse Consortium (IKMC) is a scientific endeavour to produce a collection of mouse embryonic stem cell lines that together lack every gene in the genome, and then to distribute the cells to scientific researchers to create knockout mice to study.
This figure depicts how Floxing is used in scientific research for spatial and temporal control of gene expression. In genetic engineering, floxing refers to the insertion of a DNA sequence (which is then said to be floxed) between two LoxP sequences, creating an artificial gene cassette which can then be conditionally deleted (knocked out), translocated, or inverted in a process called Cre ...
The mutations introduced in the ES Cells are conditional: this means that the initial mutation can be modified - by the application of particular DNA-altering enzymes (site specific recombinases) to make the knockout initially latent in the genome. The gene can be later knocked out (inactivated) at a specific time-point or tissue-type in mutant ...
Coordinated by the International Knockout Mouse Consortium (IKSC) these ES-cell repositories are available for exchange between international research units. Present resources comprise mutations in 11 539 unique genes, 4 414 of these conditional. [14]
A complete gene knockout permanently inactivates the gene, while a conditional gene knockout allows for the gene to be turned off and on at specific times or in specific tissues. Conditional knockouts are particularly useful for studying developmental processes and for understanding the role of a gene in specific cell types or tissues.
The International Mouse Phenotyping Consortium (IMPC) is an international scientific endeavour to create and characterize the phenotype of 20,000 knockout mouse strains. [1] [2] [3] Launched in September 2011, [1] the consortium consists of over 15 research institutes across four continents with funding provided by the NIH, European national governments and the partner institutions.
Examples of research in which knockout mice have been useful include studying and modeling different kinds of cancer, obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and Parkinson's disease. Knockout mice also offer a biological and scientific context in which drugs and other therapies can be developed and tested.
Ad
related to: conditional knockout mice control devices