Search results
Results from the WOW.Com Content Network
The evolution of color vision in primates is highly unusual compared to most eutherian mammals. A remote vertebrate ancestor of primates possessed tetrachromacy, [1] but nocturnal, warm-blooded, mammalian ancestors lost two of four cones in the retina at the time of dinosaurs.
Primates have re-developed trichromatic color vision since that time, by the mechanism of gene duplication, being under unusually high evolutionary pressure to develop color vision better than the mammalian standard. Ability to perceive red [8] and orange hues allows tree-dwelling
Many other primates (including New World monkeys) and other mammals are dichromats, which is the general color vision state for mammals that are active during the day (i.e., felines, canines, ungulates). Nocturnal mammals may have little or no color vision. Trichromat non-primate mammals are rare. [12]: 174–175 [49]
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
Primates arose 74–63 million years ago first from small terrestrial mammals, which adapted for life in tropical forests: many primate characteristics represent adaptations to the challenging environment among tree tops, including large brain sizes, binocular vision, color vision, vocalizations, shoulder girdles allowing a large degree of ...
The Young Leaf hypothesis suggests that primates with more advanced color vision could better spot younger and more nutritious leaves during fruit shortages, while there are also theories that suggest more advanced color vision was better for recognizing changes in skin tone, allowing primates to better determine the blood oxygen saturation of ...
Trichromatic color vision is the ability of humans and some other animals to see different colors, mediated by interactions among three types of color-sensing cone cells. The trichromatic color theory began in the 18th century, when Thomas Young proposed that color vision was a result of three different photoreceptor cells .
Only higher primate Old World (African) monkeys and apes (macaques, apes, orangutans) have the same kind of three-cone photoreceptor color vision humans have, while lower primate New World (South American) monkeys (spider monkeys, squirrel monkeys, cebus monkeys) have a two-cone photoreceptor kind of color vision. [62]