Search results
Results from the WOW.Com Content Network
Thyroid hormones act on nearly every cell in the body. They act to increase the basal metabolic rate, affect protein synthesis, help regulate long bone growth (synergy with growth hormone) and neural maturation, and increase the body's sensitivity to catecholamines (such as adrenaline) by permissiveness. [12]
At the cellular level, T 3 is the body's more active and potent thyroid hormone. [2] T 3 helps deliver oxygen and energy to all of the body's cells, its effects on target tissues being roughly four times more potent than those of T 4. [2] Of the thyroid hormone that is produced, just about 20% is T 3, whereas 80% is produced as T 4.
Thyroid follicular cell / Tyrosine: thyroid hormone receptor: nearly every cell in the body increased metabolism 5 Thyroxine: T 4: Amino acid derivative thyroid gland: Thyroid follicular cell / Tyrosine: thyroid hormone receptor: nearly every cell in the body Control carbohydrate, protein and fat metabolism and control physical, mental growth ...
Each thyroglobulin molecule contains approximately 16 tyrosine residues, but only a small number 10 of these are subject to iodination by thyroperoxidase in the follicular colloid. It takes two iodinated tyrosines to make a thyroid hormone molecule; therefore, each Tg molecule forms approximately 5 thyroid hormone molecules. [5]
The basolateral membrane of follicular cells contains thyrotropin receptors which bind to thyroid-stimulating hormone (TSH) found circulating in the blood. Calcitonin -producing parafollicular cells are also found along the basement membrane of the thyroid follicle, interspersed between follicular cells; and in spaces between the spherical ...
TSH (with a half-life of about an hour) stimulates the thyroid gland to secrete the hormone thyroxine (T 4), which has only a slight effect on metabolism. T 4 is converted to triiodothyronine (T 3), which is the active hormone that stimulates metabolism. About 80% of this conversion is in the liver and other organs, and 20% in the thyroid ...
In addition, up to 85% of the T 3 in blood is produced following conversion from T 4 by iodothyronine deiodinases in organs around the body. [24] Thyroid hormones act by crossing the cell membrane and binding to intracellular nuclear thyroid hormone receptors TR-α 1, TR-α 2, TR-β 1, and TR-β 2, which bind with hormone response elements and ...
Thyroxine-binding globulin (TBG) is a globulin protein encoded by the SERPINA7 gene in humans. TBG binds thyroid hormones in circulation.It is one of three transport proteins (along with transthyretin and serum albumin) responsible for carrying the thyroid hormones thyroxine (T 4) and triiodothyronine (T 3) in the bloodstream.