enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Violations to this assumption result in a large reduction in power. Suggested solutions to this violation are: delete a variable, combine levels of one variable (e.g., put males and females together), or collect more data. 3. The logarithm of the expected value of the response variable is a linear combination of the explanatory variables.

  3. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    If this assumption is violated (i.e. if the data is heteroscedastic), it may be possible to find a transformation of Y alone, or transformations of both X (the predictor variables) and Y, such that the homoscedasticity assumption (in addition to the linearity assumption) holds true on the transformed variables [5] and linear regression may ...

  4. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    It is also possible in some cases to fix the problem by applying a transformation to the response variable (e.g., fitting the logarithm of the response variable using a linear regression model, which implies that the response variable itself has a log-normal distribution rather than a normal distribution).

  5. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    x m,i (also called independent variables, explanatory variables, predictor variables, features, or attributes), and a binary outcome variable Y i (also known as a dependent variable, response variable, output variable, or class), i.e. it can assume only the two possible values 0 (often meaning "no" or "failure") or 1 (often meaning "yes" or ...

  7. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model. Nonlinear models for binary dependent variables include the probit and logit model.

  8. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    Ordinary linear regression predicts the expected value of a given unknown quantity (the response variable, a random variable) as a linear combination of a set of observed values (predictors). This implies that a constant change in a predictor leads to a constant change in the response variable (i.e. a linear-response model). This is appropriate ...

  9. Response modeling methodology - Wikipedia

    en.wikipedia.org/wiki/Response_Modeling_Methodology

    RMM was initially developed as a series of extensions to the original inverse Box–Cox transformation: = (+) /, where y is a percentile of the modeled response, Y (the modeled random variable), z is the respective percentile of a normal variate and λ is the Box–Cox parameter.