enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalent weight - Wikipedia

    en.wikipedia.org/wiki/Equivalent_weight

    However, one gram of hydrogen reacts with 8 grams of oxygen to give water or with 35.5 grams of chlorine to give hydrogen chloride: hence 8 grams of oxygen and 35.5 grams of chlorine can be taken to be equivalent to one gram of hydrogen for the measurement of equivalent weights. This system can be extended further through different acids and bases.

  3. Asphyxiant gas - Wikipedia

    en.wikipedia.org/wiki/Asphyxiant_gas

    The specific guidelines for prevention of asphyxiation due to displacement of oxygen by asphyxiant gases is covered under CGA's pamphlet SB-2, Oxygen-Deficient Atmospheres. [15] Specific guidelines for use of gases other than air in back-up respirators is covered in pamphlet SB-28, Safety of Instrument Air Systems Backed Up by Gases Other Than Air.

  4. Lifting gas - Wikipedia

    en.wikipedia.org/wiki/Lifting_gas

    Therefore, the amount of mass that can be lifted by hydrogen in air at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3. and the buoyant force for one m 3 of hydrogen in air at sea level is: 1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N

  5. Oxygen–argon ratio - Wikipedia

    en.wikipedia.org/wiki/Oxygen–argon_ratio

    Measurements of primary productivity in the ocean can be made using this ratio. The concentration of oxygen dissolved in seawater varies according to biological processes (photosynthesis and respiration) as well as physical processes (air-sea gas exchange, temperature and pressure changes, lateral mixing and vertical diffusion).

  6. Diatomic molecule - Wikipedia

    en.wikipedia.org/wiki/Diatomic_molecule

    About 99% of the Earth's atmosphere is composed of two species of diatomic molecules: nitrogen (78%) and oxygen (21%). The natural abundance of hydrogen (H 2) in the Earth's atmosphere is only of the order of parts per million, but H 2 is the most abundant diatomic molecule in the universe. The interstellar medium is dominated by hydrogen atoms.

  7. Oxygen - Wikipedia

    en.wikipedia.org/wiki/Oxygen

    2 O) is an oxide of hydrogen and the most familiar oxygen compound. Hydrogen atoms are covalently bonded to oxygen in a water molecule but also have an additional attraction (about 23.3 kJ/mol per hydrogen atom) to an adjacent oxygen atom in a separate molecule. [127]

  8. Law of multiple proportions - Wikipedia

    en.wikipedia.org/wiki/Law_of_multiple_proportions

    For example, if one tried to demonstrate it using the hydrocarbons decane (C 10 H 22) and undecane (C 11 H 24), one would find that 100 grams of carbon could react with 18.46 grams of hydrogen to produce decane or with 18.31 grams of hydrogen to produce undecane, for a ratio of hydrogen masses of 121:120, which is hardly a ratio of "small ...

  9. Mass (mass spectrometry) - Wikipedia

    en.wikipedia.org/wiki/Mass_(mass_spectrometry)

    The nitrogen rule states that organic compounds containing exclusively hydrogen, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, and the halogens either have an odd nominal mass that indicates an odd number of nitrogen atoms are present or an even nominal mass that indicates an even number of nitrogen atoms are present in the molecular ion.