enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    In the statistics literature, naive Bayes models are known under a variety of names, including simple Bayes and independence Bayes. [3] All these names reference the use of Bayes' theorem in the classifier's decision rule, but naive Bayes is not (necessarily) a Bayesian method.

  4. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.

  5. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.

  6. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    In terms of machine learning and pattern classification, the labels of a set of random observations can be divided into 2 or more classes. Each observation is called an instance and the class it belongs to is the label .

  7. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Machine Learning. Ng, Andrew Y.; Jordan, Michael I. (2002). "On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes" (PDF). Advances in Neural Information Processing Systems. Jebara, Tony (2004). Machine Learning: Discriminative and Generative. The Springer International Series in Engineering and ...

  8. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  9. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). [1] While it is one of several forms of causal notation, causal networks are special cases of Bayesian ...