Search results
Results from the WOW.Com Content Network
Polarizability increases down on columns of the periodic table. [9] Likewise, larger molecules are generally more polarizable than smaller ones. Water is a very polar molecule, but alkanes and other hydrophobic molecules are more polarizable. Water with its permanent dipole is less likely to change shape due to an external electric field.
In the CGS system of units the Clausius–Mossotti relation is typically rewritten to show the molecular polarizability volume ′ = which has units of volume [m 3]. [2] Confusion may arise from the practice of using the shorter name "molecular polarizability" for both α {\displaystyle \alpha } and α ′ {\displaystyle \alpha '} within ...
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.
where μ is the electric dipole moment of the effectively polarized water molecule (2.35 D for the SPC/E model), μ 0 is the dipole moment of an isolated water molecule (1.85 D from experiment), and α i is an isotropic polarizability constant, with a value of 1.608 × 10 −40 F·m 2. Since the charges in the model are constant, this ...
In many materials the polarizability starts to saturate at high values of electric field. This saturation can be modelled by a nonlinear susceptibility. These susceptibilities are important in nonlinear optics and lead to effects such as second-harmonic generation (such as used to convert infrared light into visible light, in green laser pointers).
The polarizability of individual particles in the medium can be related to the average susceptibility and polarization density by the Clausius–Mossotti relation. In general, the susceptibility is a function of the frequency ω of the applied field.
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε , is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy ...
where 2.60 is the correction for the oxidative dimerization of water, obtained from a least-squares correlation of data in Edwards’ first paper on the subject. [1] α and β are then parameters unique to specific nucleophiles that relate the sensitivity of the substrate to the basicity and polarizability factors. [6]