enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homogeneous polynomial - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_polynomial

    In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.

  3. SOS-convexity - Wikipedia

    en.wikipedia.org/wiki/SOS-convexity

    In contrast, deciding if a generic quartic polynomial of degree four (or higher even degree) is convex is a NP-hard problem. [3] The first counterexample of a polynomial which is convex but not SOS-convex was constructed by Amir Ali Ahmadi and Pablo Parrilo in 2009. [4] The polynomial is a homogeneous polynomial that is sum-of-squares and given ...

  4. Solid harmonics - Wikipedia

    en.wikipedia.org/wiki/Solid_harmonics

    The real regular solid harmonics, expressed in Cartesian coordinates, are real-valued homogeneous polynomials of order in x, y, z. The explicit form of these polynomials is of some importance. They appear, for example, in the form of spherical atomic orbitals and real multipole moments. The explicit Cartesian expression of the real regular ...

  5. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    For example, + + is a homogeneous polynomial of degree 5. Homogeneous polynomials also define homogeneous functions. Given a homogeneous polynomial of degree with real coefficients that takes only positive values, one gets a positively homogeneous function of degree / by raising it to the power /.

  6. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    More concretely, an n-ary quadratic form over a field K is a homogeneous polynomial of degree 2 in n variables with coefficients in K: (, …,) = = =,. This formula may be rewritten using matrices: let x be the column vector with components x 1 , ..., x n and A = ( a ij ) be the n × n matrix over K whose entries are the coefficients of q .

  7. Resultant - Wikipedia

    en.wikipedia.org/wiki/Resultant

    Given two homogeneous polynomials P(x, y) and Q(x, y) of respective total degrees p and q, their homogeneous resultant is the determinant of the matrix over the monomial basis of the linear map (,) +, where A runs over the bivariate homogeneous polynomials of degree q − 1, and B runs over the homogeneous polynomials of degree p − 1.

  8. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all of its non-zero terms have degree n. The zero polynomial is homogeneous, and, as a homogeneous polynomial, its degree is undefined. [c] For example, x 3 y 2 + 7x 2 y 3 − 3x 5 is homogeneous of degree 5. For more details, see ...

  9. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.