Search results
Results from the WOW.Com Content Network
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
The time complexity of operations in the adjacency list representation can be improved by storing the sets of adjacent vertices in more efficient data structures, such as hash tables or balanced binary search trees (the latter representation requires that vertices are identified by elements of a linearly ordered set, such as integers or ...
Unlike a normal data model such as a Unified Modeling Language (UML) class diagram, which details the relationships between classes, the object graph relates their instances. Object diagrams are subsets of the overall object graph. Object-oriented applications contain complex webs of interrelated objects.
This simple model is commonly known as the adjacency list model and was introduced by Dr. Edgar F. Codd after initial criticisms surfaced that the relational model could not model hierarchical data. [citation needed] However, the model is only a special case of a general adjacency list for a graph.
The Nested Set model is appropriate where the tree element and one or two attributes are the only data, but is a poor choice when more complex relational data exists for the elements in the tree. Given an arbitrary starting depth for a category of 'Vehicles' and a child of 'Cars' with a child of 'Mercedes', a foreign key table relationship must ...
The abstract data type (ADT) can be represented in a number of ways, including a list of parents with pointers to children, a list of children with pointers to parents, or a list of nodes and a separate list of parent-child relations (a specific type of adjacency list).
The adjacency matrix may be used as a data structure for the representation of graphs in computer programs for manipulating graphs. The main alternative data structure, also in use for this application, is the adjacency list. [11] [12]
In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...