enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern.

  3. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    Cubic honeycomb. In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps.It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

  4. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .

  5. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).

  6. Mathemalchemy - Wikipedia

    en.wikipedia.org/wiki/Mathemalchemy

    The creators had the goal of illustrating as much of mathematics as possible. Thus the various exhibits touch on number theory, fractals, tessellations, probability theory, Zeno's paradoxes, Venn diagrams, knot theory, calculus, chaos theory, topology, hyperbolic geometry, symbolic logic—and much else—all in a setting that is beautiful and fun.

  7. Domino tiling - Wikipedia

    en.wikipedia.org/wiki/Domino_tiling

    In geometry, a domino tiling of a region in the Euclidean plane is a tessellation of the region by dominoes, shapes formed by the union of two unit squares meeting edge-to-edge. Equivalently, it is a perfect matching in the grid graph formed by placing a vertex at the center of each square of the region and connecting two vertices when they ...

  8. Triangular tiling - Wikipedia

    en.wikipedia.org/wiki/Triangular_tiling

    In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees.

  9. Pythagorean tiling - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_tiling

    A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides. Many proofs of the Pythagorean theorem are based on it, [2] explaining its name. [1] It is commonly used as a pattern for floor tiles.