Search results
Results from the WOW.Com Content Network
Provided two voltage waveforms have at least some relative displacement on the time axis, other than a multiple of a half-cycle, any other polyphase set of voltages can be obtained by an array of passive transformers. Such arrays will evenly balance the polyphase load between the phases of the source system.
Normalized waveforms of the instantaneous voltages in a three-phase system in one cycle with time increasing to the right. The phase order is 1–2–3. The phase order is 1–2–3. This sequence repeats each cycle, and thus the rotational frequency of the generator sets the frequency of the power system.
A sine, square, and sawtooth wave at 440 Hz A composite waveform that is shaped like a teardrop. A waveform generated by a synthesizer. In electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time.
When the input waveform is time-sampled, instead of continuous, the analysis is usually done by applying a window function and then a discrete Fourier transform (DFT). But the DFT provides only a sparse sampling of the actual discrete-time Fourier transform (DTFT) spectrum. Figure 2, row 3 shows a DTFT for a rectangularly-windowed sinusoid.
Ripple itself is a composite (non-sinusoidal) waveform consisting of harmonics of some fundamental frequency which is usually the original AC line frequency, but in the case of switched-mode power supplies, the fundamental frequency can be tens of kilohertz to megahertz. The characteristics and components of ripple depend on its source: there ...
A simple way to derive the spectrum of a chirp using a computers, is to sample the time-domain waveform at a frequency well above the Nyquist limit and use an FFT algorithm to obtain the desired result. As this approach was not an option for the early designers, they resorted to analytic analysis, or and to graphical or approximation methods.
When two signals with these waveforms, same period, and opposite phases are added together, the sum + is either identically zero, or is a sinusoidal signal with the same period and phase, whose amplitude is the difference of the original amplitudes. The phase shift of the co-sine function relative to the sine function is +90°.
The sweep technique is a hybrid frequency domain/time domain technique. [16] A plot of, for example, response amplitude versus the check size of a stimulus checkerboard pattern plot can be obtained in 10 seconds, far faster than when time-domain averaging is used to record an evoked potential for each of several check sizes. [16]