Search results
Results from the WOW.Com Content Network
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
The Brønsted–Lowry theory (also called proton theory of acids and bases [1]) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923.
One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications.
Other examples of inorganic polyprotic acids include anions of sulfuric acid, phosphoric acid and hydrogen sulfide that have lost one or more protons. In organic chemistry and biochemistry, important examples include amino acids and derivatives of citric acid. Although an amphiprotic species must be amphoteric, the converse is not true. For ...
A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.
A broader definition of acid dissociation includes hydrolysis, in which protons are produced by the splitting of water molecules. For example, boric acid, B(OH) 3, acts as a weak acid, even though it is not a proton donor, because of the hydrolysis equilibrium B(OH) 3 + H 2 O ⇌ B(OH) − 4 + H +. Similarly, metal ion hydrolysis causes ions ...
In 1923, he recognized that acid–base reactions involved the transfer of a proton, from the acid (proton donor) to the base (proton acceptor). [8] Almost simultaneously and independently, the British chemist Martin Lowry arrived at the same conclusion, thus the name Brønsted–Lowry acid–base theory . [ 9 ]