Search results
Results from the WOW.Com Content Network
The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for
One property of the gamma function, distinguishing it from other continuous interpolations of the factorials, is given by the Bohr–Mollerup theorem, which states that the gamma function (offset by one) is the only log-convex function on the positive real numbers that interpolates the factorials and obeys the same functional equation.
Fuss–Catalan number; Central binomial coefficient; Combination; Combinatorial number system; De Polignac's formula; Difference operator; Difference polynomials; Digamma function; Egorychev method; ErdÅ‘s–Ko–Rado theorem; Euler–Mascheroni constant; Faà di Bruno's formula; Factorial; Factorial moment; Factorial number system; Factorial ...
In mathematics, the gamma function (represented by Γ, capital Greek letter gamma) is the most common extension of the factorial function to complex numbers.Derived by Daniel Bernoulli, the gamma function () is defined for all complex numbers except non-positive integers, and for every positive integer =, () = ()!.
Sigma function: Sums of powers of divisors of a given natural number. Euler's totient function: Number of numbers coprime to (and not bigger than) a given one. Prime-counting function: Number of primes less than or equal to a given number. Partition function: Order-independent count of ways to write a given positive integer as a sum of positive ...
The falling factorial can be extended to real values of using the gamma function provided and + are real numbers that are not negative integers: = (+) (+) , and so can the rising factorial: = (+) . Calculus
The Gamma and Pi functions Main article: Gamma function The Gamma function, as plotted here along the real axis, extends the factorial to a smooth function defined for all non-integer values. The factorial function, generalized to all complex numbers except negative integers. For example, 0! = 1! = 1, (−0.5)! = √π, (0.5)! = √π/2.
In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [ 1 ] [ 2 ] [ 3 ] The name factorion was coined by the author Clifford A. Pickover .