enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  3. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    Projective geometry is less restrictive than either Euclidean geometry or affine geometry. It is an intrinsically non-metrical geometry, meaning that facts are independent of any metric structure. Under the projective transformations, the incidence structure and the relation of projective harmonic conjugates are preserved.

  4. Affine geometry - Wikipedia

    en.wikipedia.org/wiki/Affine_geometry

    In projective geometry, affine space means the complement of a hyperplane at infinity in a projective space. Affine space can also be viewed as a vector space whose operations are limited to those linear combinations whose coefficients sum to one, for example 2x − y, x − y + z, (x + y + z)/3, ix + (1 − i)y, etc.

  5. Affine space - Wikipedia

    en.wikipedia.org/wiki/Affine_space

    Further, transformations of projective space that preserve affine space (equivalently, that leave the hyperplane at infinity invariant as a set) yield transformations of affine space. Conversely, any affine linear transformation extends uniquely to a projective linear transformation, so the affine group is a subgroup of the projective group.

  6. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    This leads to the concept of duality in projective geometry, the principle that the roles of points and lines can be interchanged in a theorem in projective geometry and the result will also be a theorem. Analogously, the theory of points in projective 3-space is dual to the theory of planes in projective 3-space, and so on for higher dimensions.

  7. Projective space - Wikipedia

    en.wikipedia.org/wiki/Projective_space

    The Proj construction is the construction of the scheme of a projective space, and, more generally of any projective variety, by gluing together affine schemes. In the case of projective spaces, one can take for these affine schemes the affine schemes associated to the charts (affine spaces) of the above description of a projective space as a ...

  8. Erlangen program - Wikipedia

    en.wikipedia.org/wiki/Erlangen_program

    Since the group of affine geometry is a subgroup of the group of projective geometry, any notion invariant in projective geometry is a priori meaningful in affine geometry; but not the other way round. If you remove required symmetries, you have a more powerful theory but fewer concepts and theorems (which will be deeper and more general).

  9. Affine group - Wikipedia

    en.wikipedia.org/wiki/Affine_group

    In mathematics, the affine group or general affine group of any affine space is the group of all invertible affine transformations from the space into itself. In the case of a Euclidean space (where the associated field of scalars is the real numbers), the affine group consists of those functions from the space to itself such that the image of every line is a line.