Search results
Results from the WOW.Com Content Network
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
Thus he argued that in his case the attractive pressure was proportional to the square of the density. [14] The proportionality constant, a {\displaystyle a} , when written in the form used above, has the dimension [pv 2 ] (pressure times molar volume squared), which is also molar energy times molar volume.
Density is related to pressure by the ideal gas laws. Therefore, density will also decrease exponentially with height from a sea-level value of ρ 0 roughly equal to 1.2 kg⋅m −3. At an altitude over 100 km, the atmosphere is no longer well-mixed, and each chemical species has its own scale height.
Graham's law states that the rate of diffusion or of effusion of a gas is inversely proportional to the square root of its molecular weight. Thus, if the molecular weight of one gas is four times that of another, it would diffuse through a porous plug or escape through a small pinhole in a vessel at half the rate of the other (heavier gases ...
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...
Once all the gas has been converted to liquid, the volume decreases only slightly with further increases in pressure; then Z is very nearly proportional to pressure. As temperature and pressure increase along the coexistence curve, the gas becomes more like a liquid and the liquid becomes more like a gas. At the critical point, the two are the ...