enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The ...

  3. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    The following test can be applied at any critical point a for which the Hessian matrix is invertible: If the Hessian is positive definite (equivalently, has all eigenvalues positive) at a, then f attains a local minimum at a. If the Hessian is negative definite (equivalently, has all eigenvalues negative) at a, then f attains a local maximum at a.

  4. Hessian automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Hessian_automatic...

    The graph colouring techniques explore sparsity patterns of the Hessian matrix and cheap Hessian vector products to obtain the entire matrix. Thus these techniques are suited for large, sparse matrices. The general strategy of any such colouring technique is as follows. Obtain the global sparsity pattern of

  5. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap .

  6. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point at which the Hessian matrix is nonsingular is said to be nondegenerate, and the signs of the eigenvalues of the Hessian determine the local behavior of the function. In the case of a function of a single variable, the Hessian is simply the second derivative, viewed as a 1×1-matrix, which is nonsingular if and only if it is not ...

  7. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    There also exist various quasi-Newton methods, where an approximation for the Hessian (or its inverse directly) is built up from changes in the gradient. If the Hessian is close to a non-invertible matrix, the inverted Hessian can be numerically unstable and the solution may diverge. In this case, certain workarounds have been tried in the past ...

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    When is a convex quadratic function with positive-definite Hessian , one would expect the matrices generated by a quasi-Newton method to converge to the inverse Hessian =. This is indeed the case for the class of quasi-Newton methods based on least-change updates.

  9. SOS-convexity - Wikipedia

    en.wikipedia.org/wiki/SOS-convexity

    A multivariate polynomial is SOS-convex (or sum of squares convex) if its Hessian matrix H can be factored as H(x) = S T (x)S(x) where S is a matrix (possibly rectangular) which entries are polynomials in x. [1] In other words, the Hessian matrix is a SOS matrix polynomial.