Search results
Results from the WOW.Com Content Network
There are a wide variety of fields associated with nuclear engineering, but computers and associated software are used most often in design and analysis. Neutron kinetics, thermal-hydraulics, and structural mechanics are all important in this effort. Each software needs to be tested and verified before use. [1]
The aim of LISE ++ is to simulate the production of RIBs via some type of nuclear reactions (several are available in the program), between a beam of stable isotopes and a target. The program simulates the characteristics of the nuclear reactions based on well-established models, as well as the effects of the filtering device located downstream ...
List of free analog and digital electronic circuit simulators, available for Windows, macOS, Linux, and comparing against UC Berkeley SPICE. The following table is split into two groups based on whether it has a graphical visual interface or not.
Reverted to version as of 01:12, 31 December 2005: 22:09, 31 December 2005: No thumbnail (39 KB) Fastfission~commonswiki: stylistic improvements: 01:12, 31 December 2005: 309 × 471 (35 KB) Fastfission~commonswiki == Summary == Simple diagram of nuclear fission. In the first frame, a neutron is about to collide with the nucleus of a U-235 atom.
Whereas more classical thermal conversion has been considered with the use of a radiation/boiler/energy exchanger where the X-ray energy is absorbed by a working fluid at temperatures of several thousand degrees, [25] more recent research done by companies developing nuclear aneutronic fusion reactors, like Lawrenceville Plasma Physics (LPP ...
In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor moderator or coolant. Net reactivity in a reactor depends on several factors, one of which is the ...
The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium. Four-factor formula: k ∞ = η f p ε {\displaystyle k_{\infty }=\eta fp\varepsilon } [ 1 ]
The following apply for the nuclear reaction: a + b ↔ R → c in the centre of mass frame , where a and b are the initial species about to collide, c is the final species, and R is the resonant state .