Search results
Results from the WOW.Com Content Network
In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.
Let I denote the identity matrix and let J denote the matrix of ones, both matrices of order v. The adjacency matrix A of a strongly regular graph satisfies two equations. First: = =, which is a restatement of the regularity requirement. This shows that k is an eigenvalue of the adjacency matrix with the all-ones eigenvector.
In coding theory, an expander code is a [,] linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph.These codes have good relative distance (), where and are properties of the expander graph as defined later, rate (), and decodability (algorithms of running time () exist).
Adjacency lists are generally preferred for the representation of sparse graphs, while an adjacency matrix is preferred if the graph is dense; that is, the number of edges | | is close to the number of vertices squared, | |, or if one must be able to quickly look up if there is an edge connecting two vertices.
The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 respectively. [12] The Laplacian matrix of a complete bipartite graph K m,n has eigenvalues n + m, n, m, and 0; with multiplicity 1, m − 1, n − 1 and 1 respectively. A complete bipartite graph K m,n has m ...
For example, node-level features can include network phenomena such as betweenness and centrality, or individual attributes such as age, sex, or income. [3] SNA software generates these features from raw network data formatted in an edgelist, adjacency list, or adjacency matrix (also called sociomatrix), often combined with (individual/node ...
Adjacency list; Adjacency matrix. Adjacency algebra – the algebra of polynomials in the adjacency matrix; Canadian traveller problem; Cliques and independent sets. Clique problem; Connected component; Cycle space; de Bruijn sequences; Degree diameter problem; Entanglement (graph measure) ErdÅ‘s–Gyárfás conjecture; Eternal dominating set ...
Seidel adjacency matrix — a matrix similar to the usual adjacency matrix but with −1 for adjacency; +1 for nonadjacency; 0 on the diagonal. Skew-adjacency matrix — an adjacency matrix in which each non-zero a ij is 1 or −1, accordingly as the direction i → j matches or opposes that of an initially specified orientation.