enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.

  3. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Seidel adjacency matrix — a matrix similar to the usual adjacency matrix but with −1 for adjacency; +1 for nonadjacency; 0 on the diagonal. Skew-adjacency matrix — an adjacency matrix in which each non-zero a ij is 1 or −1, accordingly as the direction i → j matches or opposes that of an initially specified orientation.

  5. Expander code - Wikipedia

    en.wikipedia.org/wiki/Expander_code

    In coding theory, an expander code is a [,] linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph.These codes have good relative distance (), where and are properties of the expander graph as defined later, rate (), and decodability (algorithms of running time () exist).

  6. Neighbourhood (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

    Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also used in the clustering coefficient of a graph, which is a measure of the average density of its neighbourhoods. In addition, many important classes of graphs may be defined by properties of ...

  7. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 respectively. [12] The Laplacian matrix of a complete bipartite graph K m,n has eigenvalues n + m, n, m, and 0; with multiplicity 1, m − 1, n − 1 and 1 respectively. A complete bipartite graph K m,n has m ...

  8. Hypergraph - Wikipedia

    en.wikipedia.org/wiki/Hypergraph

    In the case of a graph, the adjacency matrix is a square matrix which indicates whether pairs of vertices are adjacent. Likewise, we can define the adjacency matrix A = ( a i j ) {\displaystyle A=(a_{ij})} for a hypergraph in general where the hyperedges e k ≤ m {\displaystyle e_{k\leq m}} have real weights w e k ∈ R {\displaystyle w_{e_{k ...

  9. Parallel all-pairs shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_all-pairs...

    In the remainder of the article it is assumed that the graph is represented using an adjacency matrix. We expect the output of the algorithm to be a distancematrix D {\displaystyle D} . In D {\displaystyle D} , every entry d i , j {\displaystyle d_{i,j}} is the weight of the shortest path in G {\displaystyle G} from node i {\displaystyle i} to ...