Search results
Results from the WOW.Com Content Network
A contrast agent usually shortens, but in some instances increases, the value of T1 of nearby water protons thereby altering the contrast in the image. Most clinically used MRI contrast agents work by shortening the T1 relaxation time of protons inside tissues via interactions with the nearby contrast agent.
It is the generic form of steady-state free precession imaging. Different manufacturers of MRI equipment use different names for this experiment. Siemens uses the name FLASH, General Electric used the name SPGR (Spoiled Gradient Echo), and Philips uses the name CE-FFE-T1 (Contrast-Enhanced Fast Field Echo) or T1-FFE.
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields , magnetic field gradients, and radio waves to form images of the organs in the body.
Magnetic labeling of arterial blood below the imaging slab, which subsequently enters the region of interest. [22] It does not need gadolinium contrast. [23] Dynamic contrast enhanced: DCE: Measures changes over time in the shortening of the spin–lattice relaxation (T1) induced by a gadolinium contrast bolus. [24]
Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...
The common procedure for a DCE-MRI exam is to acquire a regular T1-weighted MRI scan (with no gadolinium), and then gadolinium is injected (usually as an intravenous bolus at a dose of 0.05–0.1 mmol/kg) before further T1-weighted scanning. DCE-MRI may be acquired with or without a pause for contrast injection and may have varying time ...
T2*-weighted imaging of the brain 26 weeks after subarachnoid hemorrhage, showing hemosiderin deposits as hypointense areas. [1] T 2 *-weighted imaging is an MRI sequence to quantify observable or effective T 2 (T2* or "T2-star"). In this sequence, hemorrhages and hemosiderin deposits become hypointense. [2]
T1-weighted sequences are used to visualize anatomy and detect the presence of intra-myocardial fat. T1 mapping has also been developed to quantify diffuse myocardial fibrosis. [20] T2-weighted imaging is mainly used to detect myocardial edema which may develop in acute myocarditis or infarction.