Search results
Results from the WOW.Com Content Network
When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using general inversion algorithms or by performing inverse operations (that have obvious geometric interpretation, like rotating ...
In chemistry, the Z-matrix is a way to represent a system built of atoms.A Z-matrix is also known as an internal coordinate representation.It provides a description of each atom in a molecule in terms of its atomic number, bond length, bond angle, and dihedral angle, the so-called internal coordinates, [1] [2] although it is not always the case that a Z-matrix will give information regarding ...
with A a transformation matrix. The collective variables reduce many variables to a lower-dimensional set of variables, that still describe the crucial characteristics of the system. Many collective variables than span the reaction coordinate with a continuous function ξ: ξ(t) = ξ{CV i (t)} with j ∈ N. [2]
For a change of basis, the formula of the preceding section applies, with the same change-of-basis matrix on both sides of the formula. That is, if M is the square matrix of an endomorphism of V over an "old" basis, and P is a change-of-basis matrix, then the matrix of the endomorphism on the "new" basis is .
A matrix effect value of less than 100 indicates suppression, while a value larger than 100 is a sign of matrix enhancement. An alternative definition of matrix effect utilizes the formula: M E = 100 ( A ( e x t r a c t ) A ( s t a n d a r d ) ) − 100 {\displaystyle ME=100\left({\frac {A(extract)}{A(standard)}}\right)-100}
The matrix Q is the change of basis matrix of the similarity transformation. Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear transformation as Λ.
That is, denoting each complex number by the real matrix of the linear transformation on the Argand diagram (viewed as the real vector space ), affected by complex -multiplication on . Thus, an m × n {\displaystyle m\times n} matrix of complex numbers could be well represented by a 2 m × 2 n {\displaystyle 2m\times 2n} matrix of real numbers.
From linear algebra one knows that a certain matrix can be represented in another basis through the transformation ′ = where is the basis transformation matrix. If the vectors b {\displaystyle b} respectively c {\displaystyle c} are the z-axis in one basis respectively another, they are perpendicular to the y-axis with a certain angle t ...