enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The skeleton of the tetrahedron (comprising the vertices and edges) forms a graph, with 4 vertices, and 6 edges. It is a special case of the complete graph, K 4, and wheel graph, W 4. [48] It is one of 5 Platonic graphs, each a skeleton of its Platonic solid.

  4. Wheel graph - Wikipedia

    en.wikipedia.org/wiki/Wheel_graph

    A wheel graph with n vertices can also be defined as the 1-skeleton of an (n – 1)-gonal pyramid. Some authors [1] write W n to denote a wheel graph with n vertices (n ≥ 4); other authors [2] instead use W n to denote a wheel graph with n + 1 vertices (n ≥ 3), which is formed by connecting a single vertex to all vertices of a cycle of ...

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles , each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians).

  6. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has i vertices. [6] Ringel's conjecture asks if the complete graph K 2n+1 can be decomposed into copies of any tree with n edges. [7] This is known to be true for sufficiently ...

  7. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  8. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.

  9. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    A graph with a loop having vertices labeled by degree. In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1]