Search results
Results from the WOW.Com Content Network
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...
This means that in an acidic solution, the concentration of hydrogen ions (H+) can be considered equal to the concentration of the acid. Similarly, in a basic solution, the concentration of hydroxide ions (OH-) can be considered equal to the concentration of the base.
In an aqueous solution the hydrogen ions (H +) and hydroxide ions (OH −) are in Arrhenius balance ([H +] [OH −] = K w = 1 x 10 −14 at 298 K). Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when ...
A weak base will have a higher H + concentration than a stronger base because it is less completely protonated than a stronger base and, therefore, more hydrogen ions remain in its solution. Given its greater H + concentration, the formula yields a lower pH value for the weak base. However, pH of bases is usually calculated in terms of the OH ...
In chemistry, hydronium (hydroxonium in traditional British English) is the cation [H 3 O] +, also written as H 3 O +, the type of oxonium ion produced by protonation of water.It is often viewed as the positive ion present when an Arrhenius acid is dissolved in water, as Arrhenius acid molecules in solution give up a proton (a positive hydrogen ion, H +) to the surrounding water molecules (H 2 O).
The hydrogen ion H + never exists on its own in a condensed phase, as it is always solvated to a certain extent. The high negative value of H 0 in SbF 5 /HSO 3 F mixtures indicates that the solvation of the hydrogen ion is much weaker in this solvent system than in water.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The isohydric principle is the phenomenon whereby multiple acid/base pairs in solution will be in equilibrium with one another, tied together by their common reagent: the hydrogen ion and hence, the pH of solution. That is, when several buffers are present together in the same solution, they are all exposed to the same hydrogen ion activity.