Search results
Results from the WOW.Com Content Network
A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test taker may score above or below a specific range of scores. This method is used for null hypothesis testing and if the estimated value exists in the critical areas, the alternative hypothesis is accepted over the ...
Z-test tests the mean of a distribution. For each significance level in the confidence interval, the Z-test has a single critical value (for example, 1.96 for 5% two tailed) which makes it more convenient than the Student's t-test whose critical values are defined by the sample size (through the corresponding degrees of freedom). Both the Z ...
The null hypothesis of the one-tailed test can also be formulated in the other direction (small values of favor the alternative hypothesis): H 0 : p 1 ≥ p 0 {\displaystyle H_{0}:p_{1}\geq p_{0}} The null hypothesis of the two-tailed test is:
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
In Dunnett's test we can use a common table of critical values, but more flexible options are nowadays readily available in many statistics packages. The critical values for any given percentage point depend on: whether a one- or- two-tailed test is performed; the number of groups being compared; the overall number of trials.
In order to consider both the biases, we use a two-tailed test. Note that to do this we cannot simply double the one-tailed p-value unless the probability of the event is 1/2. This is because the binomial distribution becomes asymmetric as that probability deviates from 1/2. There are two methods to define the two-tailed p-value.
Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained. The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level.
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.