enow.com Web Search

  1. Ad

    related to: double angle formula for sine

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Visual demonstration of the double-angle formula for sine. For the above isosceles triangle with unit sides and angle 2 θ {\displaystyle 2\theta } , the area ⁠ 1 / 2 ⁠ × base × height is calculated in two orientations.

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...

  4. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...

  5. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    A geometric way of deriving the sine or cosine of 45° is by considering an isosceles right triangle with leg length 1. Since two of the angles in an isosceles triangle are equal, if the remaining angle is 90° for a right triangle, then the two equal angles are each 45°.

  6. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  7. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Fig. 1a – Sine and cosine of an angle θ defined using the unit circle Indication of the sign and amount of key angles according to rotation direction Trigonometric ratios can also be represented using the unit circle , which is the circle of radius 1 centered at the origin in the plane. [ 37 ]

  8. Morrie's law - Wikipedia

    en.wikipedia.org/wiki/Morrie's_law

    The inner angles of the nonagon equal and furthermore = =, = = and = = (see graphic). Applying the cosinus definition in the right angle triangles B F M {\displaystyle \triangle BFM} , B D L {\displaystyle \triangle BDL} and B C J {\displaystyle \triangle BCJ} then yields the proof for Morrie's law: [ 2 ]

  9. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    Point P has a positive y-coordinate, and sin θ = sin(π−θ) > 0. As θ increases from zero to the full circle θ = 2π, the sine and cosine change signs in the various quadrants to keep x and y with the correct signs. The figure shows how the sign of the sine function varies as the angle changes quadrant.

  1. Ad

    related to: double angle formula for sine