Search results
Results from the WOW.Com Content Network
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Drag is a force that acts parallel to and in the same direction as the airflow. The drag coefficient of an automobile measures the way the automobile passes through the surrounding air. When automobile companies design a new vehicle they take into consideration the automobile drag coefficient in addition to the other performance characteristics ...
For an object with well-defined fixed separation points, like a circular disk with its plane normal to the flow direction, the drag coefficient is constant for Re > 3,500. [17] The further the drag coefficient C d is, in general, a function of the orientation of the flow with respect to the object (apart from symmetrical objects like a sphere).
drag force F d. Using the algorithm of the Buckingham π theorem, these five variables can be reduced to two dimensionless groups: drag coefficient c d and; Reynolds number Re. That this is so becomes apparent when the drag force F d is expressed as part of a function of the other variables in the problem:
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers , dimensionless ratios, or dimensionless physical constants ; these topics are discussed in the article.
Zero-lift drag coefficient; This page was last edited on 24 June 2020, at 21:07 (UTC). Text is available under the Creative Commons Attribution-ShareAlike License 4 ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Another method of determining trajectory and ballistic coefficient was developed and published by Wallace H. Coxe and Edgar Beugless of DuPont in 1936. This method is by shape comparison an logarithmic scale as drawn on 10 charts. The method estimates the ballistic coefficient related to the drag model of the Ingalls tables.