enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  3. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    The equation is precise – it simply provides the definition of (drag coefficient), which varies with the Reynolds number and is found by experiment. Of particular importance is the u 2 {\displaystyle u^{2}} dependence on flow velocity, meaning that fluid drag increases with the square of flow velocity.

  4. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    For an object with well-defined fixed separation points, like a circular disk with its plane normal to the flow direction, the drag coefficient is constant for Re > 3,500. [17] The further the drag coefficient C d is, in general, a function of the orientation of the flow with respect to the object (apart from symmetrical objects like a sphere).

  5. Automobile drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Automobile_drag_coefficient

    The force F required to overcome drag is calculated with the drag equation: = Therefore: = Where the drag coefficient and reference area have been collapsed into the drag area term. This allows direct estimation of the drag force at a given speed for any vehicle for which only the drag area is known and therefore easier comparison.

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material

  7. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation contains two empirical hydrodynamic coefficients—an inertia coefficient and a drag coefficient—which are determined from experimental data. As shown by dimensional analysis and in experiments by Sarpkaya, these coefficients depend in general on the Keulegan–Carpenter number , Reynolds number and surface roughness .

  8. Drag area - Wikipedia

    en.wikipedia.org/wiki/Drag_area

    The drag area is usually expressed as a product , where is a representative area of the object, and is the drag coefficient, which represents what shape it has and how streamlined it is. The drag coefficient plays a role in Reynold's drag equation,

  9. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    is the drag coefficient, and V {\displaystyle V} is the characteristic velocity (taken as terminal velocity, V t {\displaystyle V_{t}} ). Substitution of equations ( 2 – 4 ) in equation ( 1 ) and solving for terminal velocity, V t {\displaystyle V_{t}} to yield the following expression