Search results
Results from the WOW.Com Content Network
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
A past paper is an examination paper from a previous year or previous years, usually used either for exam practice or for tests such as University of Oxford, [1] [2] University of Cambridge [3] College Collections. Exam candidates find past papers valuable in test preparation.
This line has been called the amphoteric line, [2] the metal-nonmetal line, [3] the metalloid line, [4] [5] the semimetal line, [6] or the staircase. [2] [n 1] While it has also been called the Zintl border [8] or the Zintl line [9] [10] these terms instead refer to a vertical line sometimes drawn between groups 13 and 14.
Powell P & Timms PL 1974, The Chemistry of the Non-metals, Chapman & Hall, London, ISBN 978-0-470-69570-8. Twenty-two nonmetals including B, Si, Ge, As and Te. Tin and antimony are shown as being intermediate between metals and nonmetals; they are later shown as either metals or nonmetals. Astatine is counted as a metal.
As a metalloid, its chemistry is largely covalent in nature, noting it can form brittle alloys with metals, and has an extensive organometallic chemistry. Most alloys of arsenic with metals lack metallic or semimetallic conductivity. The common oxide of arsenic (As 2 O 3) is acidic but weakly amphoteric. Antimony, showing its brilliant lustre
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...
The B-subgroup metals can be subdivided into pseudo metals and hybrid metals. The pseudo metals (groups 12 and 13, including boron) are said to behave more like true metals (groups 1 to 11) than non-metals. The hybrid metals As, Sb, Bi, Te, Po, At — which other authors would call metalloids — partake about equally the properties of both.
Hydrogen is again placed by itself on account of its uniqueness. The remaining nonmetals are divided into metalloids, nonmetals, (referred to as "quintessential nonmetals"), halogens, and noble gases. Since the metalloids abut the post-transition or "poor" metals, they might be renamed as "poor non-metals". [11]