Search results
Results from the WOW.Com Content Network
Research concerning the relationship between the thermodynamic quantity entropy and both the origin and evolution of life began around the turn of the 20th century. In 1910 American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of ...
A definition of entropy based entirely on the relation of adiabatic accessibility between equilibrium states was given by E. H. Lieb and J. Yngvason in 1999. [70] This approach has several predecessors, including the pioneering work of Constantin Carathéodory from 1909 [71] and the monograph by R. Giles. [72]
Thermodynamic entropy is measured as a change in entropy to a system containing a sub-system which undergoes heat transfer to its surroundings (inside the system of interest). It is based on the macroscopic relationship between heat flow into the sub-system and the temperature at which it occurs summed over the boundary of that sub-system.
Entropy and disorder also have associations with equilibrium. [8] Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect internal disorder. [9]
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
The definition of entropy is central to the establishment of the second law of thermodynamics, which states that the entropy of isolated systems cannot decrease with time, as they always tend to arrive at a state of thermodynamic equilibrium, where the entropy is highest. Entropy is therefore also considered to be a measure of disorder in the ...
With Christmas near, bringing out the boughs of holly now -- even as you may still be putting fall decorations away -- may make you a happier person, experts say. Part of the joy that can come ...
In general, entropy is related to the number of possible microstates according to the Boltzmann principle S = k B l n Ω {\displaystyle S=k_{\mathrm {B} }\,\mathrm {ln} \,\Omega } where S is the entropy of the system, k B is the Boltzmann constant , and Ω the number of microstates.