Search results
Results from the WOW.Com Content Network
A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.
Frequent stress: the magnitude and frequency of response to stress is what determines the level of allostatic load which affects the body. Failed shut-down: the inability of the body to shut off while stress accelerates and levels in the body exceed normal levels, for example, elevated blood pressure.
A polytropic process, in particular, causes changes to the system so that the quantity is constant (where is pressure, is volume, and is the polytropic index, a constant). Note that for specific polytropic indexes, a polytropic process will be equivalent to a constant-property process.
Similarly, the process of allostasis becomes less efficient at managing the body's resources when the body endures increased levels of unhealthy stress due to wear and tear on the body and the brain. [16] An increase in allostatic load can impair and reduce neuroplasticity as stress causes the brain to age quicker. This is because with more ...
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.
Cellular stress response is the wide range of molecular changes that cells undergo in response to environmental stressors, including extremes of temperature, exposure to toxins, and mechanical damage. Cellular stress responses can also be caused by some viral infections. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The dependence of work on the path of the thermodynamic process is also unrelated to reversibility, since expansion work, which can be visualized on a pressure–volume diagram as the area beneath the equilibrium curve, is different for different reversible expansion processes (e.g. adiabatic, then isothermal; vs. isothermal, then adiabatic ...