Search results
Results from the WOW.Com Content Network
Optical activity occurs due to molecules dissolved in a fluid or due to the fluid itself only if the molecules are one of two (or more) stereoisomers; this is known as an enantiomer. The structure of such a molecule is such that it is not identical to its mirror image (which would be that of a different stereoisomer, or the "opposite enantiomer").
Specific rotation is an intensive property, distinguishing it from the more general phenomenon of optical rotation. As such, the observed rotation ( α ) of a sample of a compound can be used to quantify the enantiomeric excess of that compound, provided that the specific rotation ( [α] ) for the enantiopure compound is known.
Water vapor concentration for this gas mixture is 0.4%. Water vapor is a greenhouse gas in the Earth's atmosphere, responsible for 70% of the known absorption of incoming sunlight, particularly in the infrared region, and about 60% of the atmospheric absorption of thermal radiation by the Earth known as the greenhouse effect. [25]
A simple polarimeter to measure this rotation consists of a long tube with flat glass ends, into which the sample is placed. At each end of the tube is a Nicol prism or other polarizer. Light is shone through the tube, and the prism at the other end, attached to an eye-piece, is rotated to arrive at the region of complete brightness or that of ...
The specific rotation [] is a physical property and defined as the optical rotation α at a path length l of 1 dm, a concentration c of 10 g/L, a temperature T (usually 20 °C) and a light wavelength λ (usually sodium D line at 589.3 nm): [4]
Formulae are available for molecules whose shape approximates to that of a symmetric top. [26] The water molecule is an important example of an asymmetric top. It has an intense pure rotation spectrum in the far infrared region, below about 200 cm −1. For this reason far infrared spectrometers have to be freed of atmospheric water vapour ...
In all materials the rotation varies with wavelength. The variation is caused by two quite different phenomena. The first accounts in most cases for the majority of the variation in rotation and should not strictly be termed rotatory dispersion. It depends on the fact that optical activity is actually circular birefringence.
These changes can also be combined (e.g. rotation–vibration transitions), leading to new absorption lines at the combined energy of the two changes. The energy associated with the quantum mechanical change primarily determines the frequency of the absorption line but the frequency can be shifted by several types of interactions.