Search results
Results from the WOW.Com Content Network
The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation. Intersection points of cubic Bézier curve and straight line can be computed using direct cubic equation representing Bézier curve.
The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...
A 4K UHD 3D Mandelbulb video A ray-marched image of the 3D Mandelbulb for the iteration v ↦ v 8 + c. The Mandelbulb is a three-dimensional fractal, constructed for the first time in 1997 by Jules Ruis and further developed in 2009 by Daniel White and Paul Nylander using spherical coordinates.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Cubic equations of state refer to the group of thermodynamic models that can evaluate the specific volume of gas and liquid systems as a function of pressure and temperature. To develop a cubic model, first, it is essential to select a cubic functional form.
Hesse points can be used to solve cubic equations as follows. If A, B, C are three roots of a cubic, then the Hesse points can be found as roots of a quadratic equation. If the Hesse points are then transformed to 0 and ∞ by a fractional linear transformation, the cubic equation is transformed to one of the form x 3 = D.
For example, finding a substitution = + + for a cubic equation of degree =, = + + + such that substituting = yields a new equation ′ = + ′ + ′ + ′ such that ′ =, ′ =, or both. More generally, it may be defined conveniently by means of field theory , as the transformation on minimal polynomials implied by a different choice of ...
This is handled by examining the equation in the completions of the rational numbers: the real numbers and the p-adic numbers. A more formal version of the Hasse principle states that certain types of equations have a rational solution if and only if they have a solution in the real numbers and in the p-adic numbers for each prime p.