Search results
Results from the WOW.Com Content Network
The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.
The grade (US) or gradient (UK) ... But in practice the usual way to calculate slope is to measure the distance along the slope and the vertical rise, and calculate ...
Stream gradient (or stream slope) is the grade (or slope) of a stream. It is measured by the ratio of drop in elevation and horizontal distance. [ 1 ] It is a dimensionless quantity , usually expressed in units of meters per kilometer (m/km) or feet per mile (ft/mi); it may also be expressed in percent (%).
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
Two types of gradients, with blue arrows to indicate the direction of the gradient. Light areas indicate higher pixel values A blue and green color gradient. An image gradient is a directional change in the intensity or color in an image. The gradient of the image is one of the fundamental building blocks in image processing.
In other words, the surface gradient is the orthographic projection of the gradient onto the surface. The surface gradient arises whenever the gradient of a quantity over a surface is important. In the study of capillary surfaces for example, the gradient of spatially varying surface tension doesn't make much sense, however the surface gradient ...
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).