Ad
related to: second order partial derivative example problems in real lifeeducator.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
If the direction of derivative is not repeated, it is called a mixed partial derivative. If all mixed second order partial derivatives are continuous at a point (or on a set), f is termed a C 2 function at that point (or on that set); in this case, the partial derivatives can be exchanged by Clairaut's theorem:
The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which a i,j is zero if i ≠ j and is one otherwise, and where b i = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish.
The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.
where is a second-order elliptic operator (implying that must be positive; a case where = + is considered below). A system of partial differential equations for a vector can also be parabolic. For example, such a system is hidden in an equation of the form
Cauchy boundary conditions are simple and common in second-order ordinary differential equations, ″ = ((), ′ (),), where, in order to ensure that a unique solution () exists, one may specify the value of the function and the value of the derivative ′ at a given point =, i.e.,
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation
Ad
related to: second order partial derivative example problems in real lifeeducator.com has been visited by 10K+ users in the past month