Search results
Results from the WOW.Com Content Network
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-metre (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin). [1] Within the Standard Model, such a dipole is predicted to be non-zero but very small, at most 10 −38 e⋅cm, [2] where e stands for the elementary charge.
Equation orbital magnetic dipole moment: e = electron charge; m e = electron rest mass; ... The Cambridge Handbook of Physics Formulas. Cambridge University Press.
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized. Electric polarization of a given dielectric material sample is defined as the quotient of electric dipole moment (a vector quantity, expressed as coulombs*meters (C*m) in SI units) to volume (meters ...
The magnetic moment, also called magnetic dipole moment, is a measure of the strength of a magnetic source. The "Dirac" magnetic moment , corresponding to tree-level Feynman diagrams (which can be thought of as the classical result), can be calculated from the Dirac equation .
The transition dipole moment is useful for determining if transitions are allowed under the electric dipole interaction. For example, the transition from a bonding π {\displaystyle \pi } orbital to an antibonding π ∗ {\displaystyle \pi ^{*}} orbital is allowed because the integral defining the transition dipole moment is nonzero.