Search results
Results from the WOW.Com Content Network
Applying these two concepts results in an efficient data structure and algorithms for the representation of sets and relations. [10] [11] By extending the sharing to several BDDs, i.e. one sub-graph is used by several BDDs, the data structure Shared Reduced Ordered Binary Decision Diagram is defined. [2]
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network.It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified [1] or it is specified in several implementations with different running times. [2]
An ADD is an extension of a reduced ordered binary decision diagram, or commonly named binary decision diagram (BDD) in the literature, which terminal nodes are not restricted to the Boolean values 0 (FALSE) and 1 (TRUE). [1] [2] The terminal nodes may take any value from a set of constants S.
CALPHAD stands for Computer Coupling of Phase Diagrams and Thermochemistry, a methodology introduced in 1970 by Larry Kaufman, originally known as CALculation of PHAse Diagrams. [1] [2] [3] An equilibrium phase diagram is usually a diagram with axes for temperature and composition of a chemical system. It shows the regions where substances or ...
A zero-suppressed decision diagram (ZSDD or ZDD) is a particular kind of binary decision diagram (BDD) with fixed variable ordering. This data structure provides a canonically compact representation of sets, particularly suitable for certain combinatorial problems. Recall the Ordered Binary Decision Diagram (OBDD) reduction strategy, i.e. a ...
Now the sentence she eats a fish with a fork is analyzed using the CYK algorithm. In the following table, in P [ i , j , k ] {\displaystyle P[i,j,k]} , i is the number of the row (starting at the bottom at 1), and j is the number of the column (starting at the left at 1).
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The stepped reckoner or Leibniz calculator was a mechanical calculator invented by the German mathematician Gottfried Wilhelm Leibniz (started in 1673, when he presented a wooden model to the Royal Society of London [2] and completed in 1694). [1]