Search results
Results from the WOW.Com Content Network
The plasticity index is the size of the range of water contents where the soil exhibits plastic properties. The PI is the difference between the liquid and plastic limits (PI = LL-PL). Soils with a high PI tend to be clay, those with a lower PI tend to be silt, and those with a PI of 0 (non-plastic) tend to have little or no silt or clay.
Soil characteristics are based on particle size grading of the coarser particles and plasticity of the finer particles. Main descriptions should be kept concise however they can be followed by further details if applicable such as, density, discontinuities, bedding, colour, composite soil types, principal soil type, stratum name, geological ...
Soil bulk density, when determined at standardized moisture conditions, is an estimate of soil compaction. [3] Soil porosity consists of the void part of the soil volume and is occupied by gases or water. Soil consistency is the ability of soil materials to stick together. Soil temperature and colour are self-defining.
The Plasticity Index of a particular soil specimen is defined as the difference between the Liquid Limit and the Plastic Limit of the specimen; it is an indicator of how much water the soil particles in the specimen can absorb, and correlates with many engineering properties like permeability, compressibility, shear strength and others ...
The Unified Soil Classification System (USCS) is a soil classification system used in engineering and geology to describe the texture and grain size of a soil. The classification system can be applied to most unconsolidated materials, and is represented by a two-letter symbol. Each letter is described below (with the exception of Pt):
Silts and clays are distinguished by the soils' Atterberg limits, and thus the soils are separated into "high-plasticity" and "low-plasticity" soils. Moderately organic soils are considered subdivisions of silts and clays and are distinguished from inorganic soils by changes in their plasticity properties (and Atterberg limits) on drying.
Such maps are typically richer in context and show higher spatial detail, yet are not necessarily more accurate than traditional soil maps. Soil maps produced using (geo)statistical technique can also include an estimate of the model uncertainty. [3] An example of a traditional soil map showing soil mapping units, described soil profiles and ...
Figure 1: View of Drucker–Prager yield surface in 3D space of principal stresses for =, =. The Drucker–Prager yield criterion [1] is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding.