Search results
Results from the WOW.Com Content Network
Glass and metals are examples of isotropic materials. [3] Common anisotropic materials include wood (because its material properties are different parallel to and perpendicular to the grain) and layered rocks such as slate. Isotropic materials are useful since they are easier to shape, and their behavior is easier to predict.
Isotropic solids tend to be of interest when developing models for physical behavior of materials, as they tend to allow for dramatic simplifications of theory; for example, conductivity in metals of the cubic crystal system can be described with single scalar value, rather than a tensor. [1]
An example of a transversely isotropic material is the so-called on-axis unidirectional fiber composite lamina where the fibers are circular in cross section. In a unidirectional composite, the plane normal to the fiber direction can be considered as the isotropic plane, at long wavelengths (low frequencies) of excitation.
This does not mean all materials with twist effect fall in the bi-isotropic class. The twist effect of the class of bi-isotropic materials is caused by the chirality and non- reciprocity of the structure of the media, in which the electric and magnetic field of an electromagnetic wave (or simply, light) interact in an unusual way.
Anisotropic material models are available for linear elasticity. In the nonlinear regime, the modeling is often restricted to orthotropic material models which do not capture the physics for all heterogeneous materials. An important goal of micromechanics is predicting the anisotropic response of the heterogeneous material on the basis of the ...
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
Any two of these parameters are sufficient to fully describe elasticity in an isotropic material. For example, calculating physical properties of cancerous skin tissue, has been measured and found to be a Poisson’s ratio of 0.43±0.12 and an average Young’s modulus of 52 KPa.
A basic distinction is between isotropic materials, which exhibit the same properties regardless of the direction of the light, and anisotropic ones, which exhibit different properties when light passes through them in different directions. The optical properties of matter can lead to a variety of interesting optical phenomena.