enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a method commonly used in data mining. [3] The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples.

  3. Decision tree model - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_model

    Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.

  4. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees: Are simple to understand and interpret. People are able to understand decision tree models after a brief explanation. Have value even with little hard data. Important insights can be generated based on experts describing a situation (its alternatives, probabilities, and costs) and their preferences for outcomes.

  5. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    [37] [3] For example, following the path that a decision tree takes to make its decision is quite trivial, but following the paths of tens or hundreds of trees is much harder. To achieve both performance and interpretability, some model compression techniques allow transforming a random forest into a minimal "born-again" decision tree that ...

  6. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    Potential ID3-generated decision tree. Attributes are arranged as nodes by ability to classify examples. Values of attributes are represented by branches. In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset.

  7. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    A sample with C denotes that it has been confirmed to be cancerous, while NC means it is non-cancerous. Using this data, a decision tree can be created with information gain used to determine the candidate splits for each node. For the next step, the entropy at parent node t of the above simple decision tree is computed as:

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Decision stump - Wikipedia

    en.wikipedia.org/wiki/Decision_stump

    An example of a decision stump that discriminates between two of three classes of Iris flower data set: Iris versicolor and Iris virginica. The petal width is in centimetres. This particular stump achieves 94% accuracy on the Iris dataset for these two classes. A decision stump is a machine learning model consisting of a one-level decision tree ...