enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.

  3. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  4. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    A square is a limiting case of both a kite and a rhombus. Orthodiagonal equidiagonal quadrilaterals in which the diagonals are at least as long as all of the quadrilateral's sides have the maximum area for their diameter among all quadrilaterals, solving the n = 4 case of the biggest little polygon problem.

  5. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  6. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The rhombus has a square as a special case, and is a special case of a kite and parallelogram.. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length.

  7. Thébault's theorem - Wikipedia

    en.wikipedia.org/wiki/Thébault's_theorem

    Given any parallelogram, construct on its sides four squares external to the parallelogram. The quadrilateral formed by joining the centers of those four squares is a square. [1] It is a special case of van Aubel's theorem and a square version of the Napoleon's theorem.

  8. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Informally: "a box or oblong" (including a square). Square (regular quadrilateral): all four sides are of equal length (equilateral), and all four angles are right angles. An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length.

  9. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    If the quadrilateral is a parallelogram, then the midpoints of the diagonals coincide so that the connecting line segment has length 0. In addition the parallel sides are of equal length, hence Euler's theorem reduces to + = + which is the parallelogram law.