Search results
Results from the WOW.Com Content Network
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates , where they prevent cancer formation. [ 5 ]
The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. [5] [6] In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. [5] [6] The expression of PUMA is regulated by the tumor suppressor p53.
P53, p63, and p73 have similar features in their gene structures and functions but have also diverged evolutionarily. The p53 family evolved from an ancestor gene in unicellular life. [ 4 ] The ancestor gene functioned in germ line DNA protection early invertebrates. [ 5 ]
Apoptosis-stimulating of p53 protein 2 (ASPP2) also known as Bcl2-binding protein (Bbp) and tumor suppressor p53-binding protein 2 (p53BP2) is a protein that in humans is encoded by the TP53BP2 gene. [ 5 ] [ 6 ] [ 7 ] Multiple transcript variants encoding different isoforms have been found for this gene.
The p53 protein is a transcription factor that, when activated as part of the cell's response to stress, regulates many downstream target genes, including BID. However, p53 also has a transcription-independent role in apoptosis. In particular, p53 interacts with Bax, promoting Bax activation and the insertion of Bax into the mitochondrial membrane.
P53 function can also be responsible for a limited life span where mutations of the p53 gene causes expression of dominant-negative forms producing long lived animals. For example in an experiment using C. elegans , the increased life span of p53 mutants was found to depend on increased autophagy. [ 19 ]
Mdm2 has been identified as a p53 interacting protein that represses p53 transcriptional activity. Mdm2 achieves this repression by binding to and blocking the N-terminal trans-activation domain of p53. Mdm2 is a p53 responsive gene—that is, its transcription can be activated by p53.
This suggests that p53 pathway could be effectively harnessed as a therapeutic intervention to trigger senescence and ultimately mitigate tumorigenesis. [4] p53 has been shown to have promising therapeutic relevance in an oncological context. In the 2007 Nature paper by Xue et al., RNAi was used to regulate endogenous p53 in a liver carcinoma ...