Search results
Results from the WOW.Com Content Network
P(A|B) may or may not be equal to P(A), i.e., the unconditional probability or absolute probability of A. If P(A|B) = P(A), then events A and B are said to be independent: in such a case, knowledge about either event does not alter the likelihood of each other. P(A|B) (the conditional probability of A given B) typically differs from P(B|A).
A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...
The formula follows from considering the set {1, 2, 3, ..., n} and counting separately (a) the k-element groupings that include a particular set element, say "i", in every group (since "i" is already chosen to fill one spot in every group, we need only choose k − 1 from the remaining n − 1) and (b) all the k-groupings that don't include "i ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
P(A) is the proportion of outcomes with property A (the prior) and P(B) is the proportion with property B. P(B | A) is the proportion of outcomes with property B out of outcomes with property A, and P(A | B) is the proportion of those with A out of those with B (the posterior). The role of Bayes' theorem can be shown with tree diagrams.
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
An alternative formula that does not involve recursion is =! = (+) = ()! = (+), where n (d) is the rising factorial. The geometric meaning of a function P d is: P d (1) = 1 for all d . Construct a d - dimensional triangle (a 3-dimensional triangle is a tetrahedron ) by placing additional dots below an initial dot, corresponding to P d (1) = 1.
) elements, the sum over which is infeasible to compute in practice unless the number of trials n is small (e.g. if n = 30, contains over 10 20 elements). However, there are other, more efficient ways to calculate Pr ( K = k ) {\displaystyle \Pr(K=k)} .