Search results
Results from the WOW.Com Content Network
Radiation hormesis is the conjecture that a low level of ionizing radiation (i.e., near the level of Earth's natural background radiation) helps "immunize" cells against DNA damage from other causes (such as free radicals or larger doses of ionizing radiation), and decreases the risk of cancer. The theory proposes that such low levels activate ...
Exposure to radiation causes chemical changes in gases. The least susceptible to damage are noble gases, where the major concern is the nuclear transmutation with follow-up chemical reactions of the nuclear reaction products. High-intensity ionizing radiation in air can produce a visible ionized air glow of telltale
Free radical damage to DNA can occur as a result of exposure to ionizing radiation or to radiomimetic [1] compounds. Damage to DNA as a result of free radical attack is called indirect DNA damage because the radicals formed can diffuse throughout the body and affect other organs.
The basic cause of sporadic (non-familial) cancers is DNA damage and genomic instability. [1] [2] A minority of cancers are due to inherited genetic mutations. [3] Most cancers are related to environmental, lifestyle, or behavioral exposures. [4] Cancer is generally not contagious in humans, though it can be caused by oncoviruses and cancer ...
Therefore, production of red and white blood cells and platelets is stopped due to loss of the blood-making stem cells (4.5 Gray kills 95% of stem cells). The loss of platelets greatly increases the chance of fatal hemorrhage, while the lack of white blood cells causes infections; the fall in red blood cells is minimal, and only causes mild ...
In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. [2] Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the ...
The human body contains many types of cells and a human can be killed by the loss of a single type of cells in a vital organ. For many short term radiation deaths (3–30 days), the loss of two important types of cells that are constantly being regenerated causes death.
At the cellular level, mutations can cause alterations in protein function and regulation. Mutations are replicated when the cell replicates. In a population of cells, mutant cells will increase or decrease in frequency according to the effects of the mutation on the ability of the cell to survive and reproduce.