enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of ′ is the second derivative, denoted as ⁠ ″ ⁠, and the derivative of ″ is the third derivative, denoted as ⁠ ‴ ⁠. By continuing this process, if it exists, the ⁠ n {\displaystyle n} ⁠ th derivative is the derivative of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ th derivative or the derivative of order ...

  3. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  4. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x. Leibniz's notation makes this relationship explicit by writing the derivative as: [1].

  5. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    the partial differential of y with respect to any one of the variables x 1 is the principal part of the change in y resulting from a change dx 1 in that one variable. The partial differential is therefore involving the partial derivative of y with respect to x 1.

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    If f is a differentiable function on ℝ (or an open interval) and x is a local maximum or a local minimum of f, then the derivative of f at x is zero. Points where f'(x) = 0 are called critical points or stationary points (and the value of f at x is called a critical value).

  7. Differential operator - Wikipedia

    en.wikipedia.org/wiki/Differential_operator

    The most common differential operator is the action of taking the derivative. Common notations for taking the first derivative with respect to a variable x include: , , , and . When taking higher, nth order derivatives, the operator may be written:

  8. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    By Darboux's theorem, the derivative of any differentiable function is a Darboux function. In particular, the derivative of the function xx 2 sin ⁡ ( 1 / x ) {\displaystyle x\mapsto x^{2}\sin(1/x)} is a Darboux function even though it is not continuous at one point.

  9. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of ... ≠ 0 then g(x) = 1/f(x) ...