Search results
Results from the WOW.Com Content Network
The logarithm of an infinite cardinal number κ is defined as the least cardinal number μ such that κ ≤ 2 μ. Logarithms of infinite cardinals are useful in some fields of mathematics, for example in the study of cardinal invariants of topological spaces , though they lack some of the properties that logarithms of positive real numbers possess.
The continuum hypothesis says that =, i.e. is the smallest cardinal number bigger than , i.e. there is no set whose cardinality is strictly between that of the integers and that of the real numbers. The continuum hypothesis is independent of ZFC , a standard axiomatization of set theory; that is, it is impossible to prove the continuum ...
In linguistics, and more precisely in traditional grammar, a cardinal numeral (or cardinal number word) is a part of speech used to count. Examples in English are the words one , two , three , and the compounds three hundred [and] forty-two and nine hundred [and] sixty .
Cardinal numbers can be defined as follows. Define two sets to have the same size by: there exists a bijection between the two sets (a one-to-one correspondence between the elements). Then a cardinal number is, by definition, a class consisting of all sets of the same size. To have the same size is an equivalence relation, and the cardinal ...
A large cardinal axiom is an axiom stating that there exists a cardinal (or perhaps many of them) with some specified large cardinal property. Most working set theorists believe that the large cardinal axioms that are currently being considered are consistent with ZFC. [2] These axioms are strong enough to imply the consistency of ZFC.
Existence of a cardinal number κ of a given type implies the existence of cardinals of most of the types listed above that type, and for most listed cardinal descriptions φ of lesser consistency strength, V κ satisfies "there is an unbounded class of cardinals satisfying φ".
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .
Pages in category "Cardinal numbers" The following 43 pages are in this category, out of 43 total. This list may not reflect recent changes. ...